
DDT(1) General Commands Manual DDT(1)

NAME
ddt − debug remote and local programs

SYNOPSIS
ddt [−cdfhinrstuw] [file [file]]

DESCRIPTION
Ddt is an interactive symbolic debugger that allows remote and local debugging at the assembly language

level. Locally, ddt works through ptrace(2) by default or through a /dev/mem file. Remotely, ddt commu-

nicates through a serial link. Code may be displayed and breakpoints set. Single-stepping is possible at

machine instruction level, procedure level, or on non-sequential instruction fetch. Ddt supports debugging

in physical address space, supervisor virtual address space, and user virtual address space.

When no options are specified and two file names are given, the first file must be an a.out format file with

symbols and the second file must be a core file. To specify a core file without specifying an a.out file, use

the −c option.

Ddt also allows examination of:

Vmunix core files (produced with savecore(8)) using the −u option.

Vmunix through /dev/mem or /dev/kmem using the −f option.

Any GENIX file without symbols (using −f file).

Options are:

−c Indicate that the file is a core file. No symbols are availiable. Used only when one file name is

given.

−d Set input and output radix to decimal.

−f Examine file ‘‘straight.’’ No symbols exist and addresses represent actual offsets into the file.

When the −f option is specified with two filenames, ddt assumes the first is a file in a.out format

and the second is a /dev/mem file. Ddt examines memory through the /dev/mem files, not through

the system ptrace calls. Symbols are available in this case.

−h Set input and output radix to hexidecimal.

−i Open file, but do not allow it to be executed. −i is useful for comparing and checking a.out files.

It cannot be used with −c or −f.

−n Do not use the monitor commands that check the NS16082 Memory Management Unit (MMU)

for address translation. This option is for remote debugging ONLY. It tells ddt that the remote

system does not have an MMU. Ddt displays all addresses as virtual (as the CPU sees addresses).

NOTE: If an MMU is present in the remote system and enabled for translation, this option will

cause aborts to be caught by ABORT vector (NS16032) of either ddt or the last NS16000 program

to set that vector.

−r Debug remotely. This allows debugging on a remote NS16000 board. The remote board must be

set up as described in GENIX Cross-Support Software for an NS16000-based System.

−s Dump all program symbols in the a.out file on standard output, then exit. In this symbol dump,

ddt lists each symbol followed by the hex value for that symbol and its module table address (in

decimal). Even though all the symbols are shown, where symbol name or symbol value conflicts

exist (i.e., two or more symbols with same value or name), either the external symbol will replace

the local or the last found symbol will replace any other.

−t Scan the Module Table for symbols. Normally, ddt takes the module number in the symbol table

entry stab.h when it computes module table-related instruction fields (sb relative, external). This

option finds the module number by scanning the Module Table for the best match. This is only

useful for tracking link errors.

1

DDT(1) General Commands Manual DDT(1)

−u vmunix vmcore.N

Debug vmunix core. Ddt examines a vmunix core file (made by savecore(8)) with the corre-

sponding vmunix and vmsymbols in /. The panic string will be printed for the crash. Registers at

time of panic can be looked at, addresses in the kernel will be translated (i.e., for looking at u.

area).

−w Write enable file. −w must be used with −f or −i. Using −fw allows file to be changed. Using

−iw allows patching on a.out files. −w is useful for changing code by hand.

When no options are specified, ddt opens an a.out file in the current directory in hexidecimal mode for

local execution.

In the following descriptions, the following characters are specified symbolically:

$ = escape

<cr> = return

<lf> = line feed (ˆj or ’)

<bs> = backspace

Ddt Command Format

Most command lines use the format:

[expression] ... [$ [$]] [number] ... command [<cr>]

Command is a command character or characters. Expression and number arguments, such as symbols

defined in an a.out file and numbers in the current radix, can optionally be used with certain command

characters. Most commands are specified with one or two escape characters ($). The typical command

consists of ‘‘$command’’, which is escape followed by a command character. Some commands have multi-

ple command characters and some require a <cr> to complete.

Commands are executed immediately. When symbols or expressions are typed, <bs> may be used for input

editing.

Symbols

Symbols are composed alphanumerics, underlines (_), dollar signs ($), and periods (.).

The ‘‘$’’ and ‘‘.’’ symbols are defined by ddt. Alone, the symbol ‘‘.’’ refers to the most recently specified

address, or if it is used immediately after a number, ‘‘.’’ means input the number in decimal radix. Ddt

translates ‘‘$’’ into ‘‘.’’, so ‘‘$’’ functions the same as ‘‘.’’.

Symbols other than ‘‘$’’ and ‘‘.’’ are defined by the file being debugged.

All NS16032 CPU registers are available; they are specified to ddt by the register names:

r0, r1, r2, r3, r4, r5, r6, r7 General Purpose Registers 0-7

psr Processor Status Register

f0, f1, f2, f3, f4, f5, f6, f7 Floating Point Registers 0-7 (local mode only)

mod Module Table Register

sb Static Base Register

pc Program Counter

sp1 User Stack Pointer

sp0 Interrupt Stack Pointer

fp Frame Pointer

intbase Interrupt Base Register

These names are the same as those given in the NS16032 data sheet.

When a symbol is specified in a command line, the symbol can be abbreviated and an initial underline (_)

need not be typed. When ddt looks for the symbol it selects the best match. For example, assuming the

symbol ‘‘XYZ’’ has been typed as part of a command line, ddt will look through all the symbols and select

the one closest to ‘‘XYZ’’, as follows:

2

DDT(1) General Commands Manual DDT(1)

1) XYZ

2) _ XYZ

3) XYZ$anything

4) XYZanything

5) _ XYZanything

If ddt does not find any of the six possible matches, it prints ‘‘symbol <XYZ> not found’’. If ddt returns,

for example, ‘‘XYZTOMATO’’, then the symbols ‘‘XYZ’’ and ‘‘_ XYZ’’ do not exist in the file; the sym-

bols ‘‘_ XYZanything’’, ‘‘XYZanything’’, and ‘‘_ XYZanything’’ may or may not be present in the file.

Anything field will match the first matching symbol.

Expressions

Expressions are composed of symbols, numbers, and operators.

When ddt evaluates expressions, it finds the value of primary expressions first. (Primary expressions, for

example, symbols and numbers, have intrinsic values.) Next, ddt negates or complements the primary

expression. Ddt performs multiply, and, div, mod, shift right, and shift left operations. Last, ddt does add,

subtract, or, and xor operations in the expression. The following details ddt’s order of evaluation for

expression:

Low Priority

expr ::= D1 ‘‘+’’ D1 add

| D1 ‘‘-’’ D1 subtract

| D1 ‘‘|’’ D1 or

| D1 ‘‘ˆ’’ D1 xor

Medium Priority

D1 ::= D2 ‘‘*’’ D2 multiply

| D2 ‘‘&’’ D2 and

| D2 ‘‘#’’ D2 div

| D2 ‘‘%’’ D2 mod

| D2 ‘‘>’’ D2 shift right by second D2

| D2 ‘‘<’’ D2 shift left by second D2

High Priority Operators

D2 ::= ‘‘-’’ D3 neg ate

‘‘˜ ’’ D3 complement

Primary Expressions

D3 ::= ‘‘(’’ expr ‘‘)’’ subxpression

‘‘ . ’’ dot

‘‘ ‘ ’’ last displayed value

D3 "@e indirect through D3

symbol take symbol value;

3

DDT(1) General Commands Manual DDT(1)

%symbol assume % is part of symbol

number [0-9,a-f,A-F] if leading digit a-f provide leading 0, for

example, type ‘‘0a’’ for hex a

number[.,o,x] . means decimal, o octal, and x hex

register[r0-r7,fp,sp,pc,psr,mod,msr,eia]

And, for remote debugging add:

register[bpr0,bpr1,bcnt,pf0,pf1,sc0,ptb0,ptb1,intb]

The postfix ‘@’ operator makes the expression a pointer and the value is the 4-byte quantity at that memory

address.

When a register is used in an expression, it is both an address and a value. For example, ‘‘r0+4’’ is the con-

tents of r0 plus 4, while ‘‘r0/’’ is the contents of r0 and ‘‘r0/5<cr>’’ stores 5 in r0. ‘‘r0/<lf><lf>’’ prints the

contents of r0, r1, and r2. (Be careful, ‘‘r0<lf>’’ stores the contents of r0 in the currently open location.)

Examples:

Consider the addressing mode 4(8(fp)). The effective operand address could be displayed with:

fp+8@+4=

or:

fp+8@+4;

The operand could be displayed in the current mode with:

fp+8@+4/

The more complicated case of ‘‘4(8(fp))[r2:w]’’ can be displayed with: ‘‘fp+8@+4+r2*2i’’ (then ‘‘=’’, ‘‘;’’,

‘‘/’’, etc.)

For ext(a)+b, type:

mod+4@+a*4@+b

Mode Selection Commands

Mode selection commands tell ddt what format to use for displaying output. The output format mode is

specified locally or permanently. Typing a single $ changes the output mode locally; typing $$ changes the

output mode permanently. Local formats remain in effect until the next <cr> is typed. Permanent formats

are effective until another permanent mode is specified.

Mode selection commands are:

$mb Select absolute numeric mode. Print the numeric value using the current radix. $mb is the same

as $mn , except that $mb ignores $mA and $mr .

$mc Select character mode. Show the hexadecimal value of nonprintable characters preceded by a

backslash (/).

$mf Select floating-point mode. Print numbers as floating-point numbers.

$mi Select instruction mode. Display memory as assembly instruction mnemonics and their operands.

($mi mode is used by automatic mode ($mA) when the address is in the program code area.)

$mn Select numeric mode. $mn is the same as $mb, but $mr and $mA override $mn.

$ms Select string mode. Show memory contents as character strings, and stop printing on null.

$mA Select automatic mode (default except for −f file option). Ddt prints the data at addresses in the

program code area as instructions (like under ‘‘$mi’’); ddt prints the data at other addresses

numerically, according to the size given by ‘‘$tX’’.

4

DDT(1) General Commands Manual DDT(1)

$mN Select normal mode (default for −f file option). $mN prints all data numerically and no symbols

are available.

$ma Select nonsymbolic mode.

$mr Select symbolic mode. $mr overrules $mn.

value$mm

Set maximum offset. The maximum offset tells ddt to show addresses as offsets from a symbol

until the offset is greater than value. Default value is 1000.

$r[bodx]

Set input/output radix as in printf: b=binary, o=octal, d=decimal, x=hex. Character or instruction

input modes are not available.

$t[bwd]

Select the context or data size: b=byte, w=word, d=doubleword. Default is d.

$n Like ‘‘=’’ only display numeric as unsigned.

A decimal radix number can always be entered regardless of the input radix by typing the number followed

by a ‘‘.’’; i.e., ‘‘234.’’ is 234 base 10. Likewise a hexadecimal radix number can always be entered by typ-

ing the number followed by a ‘‘x’’; i.e., ‘‘2aex’’ is 2AE base 16. An octal radix number can always be

entered by typing the number followed by an ‘‘o’’.

Run Commands

The run commands are:

$g and $G arguments <cr>

Begin execution of the a.out (or file). $G allows arguments to be passed to the program through

ddt. For example, to debug ‘‘/usr/ucb/ls −R’’, give the run command ‘‘$G −R <cr>’’. Arguments

need only be set once with $G; on repeat runs, $g will use the same arguments. $G can be issued

at any time to change arguments.

When ddt begins execution, it gives the name of file and the arguments; for example, ddt prints:

running /usr/ucb/ls −R

Both $g and $G put all breakpoints in a program before running.

For remote debugging, $g and $p are the same, except $g will not proceed from a breakpoint. $G

does not pass arguments in remote mode.

Retyping Output

Ddt regcognizes three commands for retyping output:

; Retype the last value in symbolic format.

= Retype the last value as a number.

$n Retype the last value as a unsigned number.

Display (or Open Location) Commands

These commands display code or data and ‘‘open’’ locations.

In the following table, ‘‘the new address’’ means the last value typed, either by ddt or through the key-

board. However, ‘‘if typed’’ means ‘‘if typed on the keyboard.’’ Certain commands change the location

counter (.). Open location commands and their effects on ‘‘.’’ are:

5

DDT(1) General Commands Manual DDT(1)

Command: Function: Changes ‘‘.’’?

! Open the new address. If typed.

/ Open and type the new address. If typed.

\ Open and type the new address. Never.

ˆI (tab) Open and type the new address. Always.

For example, ‘‘10/’’ displays address 10 and the contents of address ‘‘10’’; it leaves ‘‘.’’ set to 10. ‘‘10\’’

displays the same things, but it does not change ‘‘.’’ at all.

Display or Change Commands

These commands display and change memory locations. To change the contents of a location, the address

must be open (see previous section) and replacement expression must be specified in the command line.

Ddt stores the value of the replacement expression in the location.

Some commands increment or decrement the location counter (.). The delta depends on the contexts estab-

lished with the $tX command, or in $mi mode, it depends on the size of the instruction.

All change or display commands open the new ‘‘.’’.

The change or display commands are:

? Decrement ‘‘.’’ and display the new address.

expr? Store expr first then decrement ‘‘.’’ and display the new address.

< lf> Increment ‘‘.’’ and displays the new address.

expr’ Store expr then decrement ‘‘.’’ and display the new address.

expr< lf> Store expr then decrement ‘‘.’’ and display the new address.

<cr> Cancel temporary output format modes.

expr<cr> Store expr then decrement ‘‘.’’ display the new address.

Program Control Commands

Program control commands manage breakpoints, step through a program, provide a help facility, quit ddt,

display memory, and create command strings. For these commands the radix of number is always decimal.

addr$b Set breakpoint at addr. If addr is not specified, then the value of ‘‘.’’ is used.

$numberb

Remove breakpoint number.

$B Remove all breakpoints.

$l List all existing breakpoints. For remote debugging, also list which address space breakpoint are

in (user or supervisor).

number$p

Proceed from current pc, with number proceeds from breakpoints; default is 0. Proceed is done by

stepping one instruction, (a ‘‘ [’’), inserting all breakpoints and running.

number]

Single-step pc. Do not insert breakpoint. Default is 0.

number[

Single-step over pc. If the next instruction is cxp, cxpd, jsr or bsr, step over call. Also, for remote

debugging step over rett, reti. Does not insert breakpoint. number[will do number single-steps.

Default is 0.

} Single-step. Insert breakpoints.

{ Single-step pc. If the instruction is cxp, cxpd, jsr or bsr, step over call. Also, for remote debug-

ging, step over rett, reti. Insert breakpoints.

6

DDT(1) General Commands Manual DDT(1)

$k Skip the current instruction.

$s Display a stack trace. Show offset in function and arguments to call (for C call-return sequences).

$S Display a stack trace. Show offset in function but no arguments to call (for bad stacks and non-C

stacks).

$U Put an uplevel breakpoint at the return pc of the next frame.

$u Insert an uplevel breakpoint at the return pc of the next frame and proceed. Execution proceeds to

that breakpoint because $u causes ddt to temporarily ignore any intervening breakpoints. When

ddt reaches the next frame, $u removes the breakpoint it inserted. $u differs from $U in that it

proceeds directly to the next frame. Note: $u can be used to get out of a call. To work as

intended, be sure to step past the ENTER instruction in the current routine (the fp hasn’t changed

yet). If you are not beyond the ENTER, then the breakpoint will be placed at a depth one greater

than expected.

calladdr, argn... arg1$c

Perform a cxp call to the address given. The address must be the start of routine and have the cor-

rect module value for that symbol. The arguments will be pushed on the stack in right to left order.

If the program stops due to a breakpoint within the call routine, the arguments will not be cleaned

off the stack on proceed or step.

$h Print a synopsis of ddt commands.

$q Quit ddt.

ˆd Display next 10 data items.

ˆb Single-step 10 times (10 ‘] ’).

ˆf Single-step over 10 times (10 ‘ [’).

number$ecommand-string

Execute the command-string when breakpoint number is hit, or if no number is given, whenever

the program stops. A command-string is any other ddt command. For example: ‘‘$er0/’’ will

show the contents of r0 every time the program stops (single-step or breakpoint).

number$E

Disable command string for breakpoint number, or if no number is given, disable the $e (the any

stop string). $numberb will also disable command string number, and $B will disable all number

command strings.

$L List all stop strings. T: is the any break command string. Stop strings are set with $e. ‘‘1:’’

would indicate breakpoint number 1 has that command string.

Remote Debugging Commands

This section describes commands available only during remote debugging.

$d Download the a.out file over the serial line. When ddt transfers a file, it prints to standard output

the number of bytes remaining to be loaded (in increments of a thousand).

$v Switch to supervisor mode examination. The sp register is now sp0. The address space is as

defined by the Memory Management Unit, MMU, (NS16082) for supervisor mode.

$V Switch to user mode examination. The sp register is now sp1. The address space is as defined by

the MMU (NS16082) for user mode.

$P Nonsequential step. Progress until one nonsequential trap (as defined by MMU) has occurred.

addr$x Set an MMU breakpoint at address or ‘‘.’’ if no address is given. Only one MMU breakpoint may

be set. It can be seen with $l and removed with $numberb where number is the number given by

$l. When the breakpoint occurs, ddt prints a message stating the kind of access that caused the

break. $x will break on execute, read, and write.

7

DDT(1) General Commands Manual DDT(1)

addr$XX

Set an MMU breakpoint; same as above only break on execute.

addr$r Set an MMU breakpoint; same as above only break on read.

addr$Xw

Set an MMU breakpoint; same as above only break on write.

addr$XR

Set an MMU breakpoint; same as above only break on read or write.

Signals

When using ddt locally, signals sent to the program being debugged are shown with standard GENIX names

(see /usr/include/signal.h). Remotely ddt shows traps caught by the running program with NS16000 trap

names. For example:

Trap(UND)

An undefined instruction trap occurred.

FILES
/dev/tty?? the line used for remote debugging

SEE ALSO
cu16(1), ptrace(2)

BUGS
The ptrace(2) addr argument for read or write to the u area (user process data structure within the kernel) is

nonstandard. If the value matches any for registers in <sys/reg.h>, the request refers to a register. Other-

wise, it is an index into the u.

8

