
CC(1) General Commands Manual CC(1)

NAME
cc − C compiler (nmcc for cross-support)

SYNOPSIS
cc [option] ... file ...

nmcc [option] ... file ...

DESCRIPTION
Cc is the GENIX C compiler. It accepts several types of arguments:

Arguments whose names end with ‘.c’ are taken to be C source programs; they are compiled, and object

programs are left in files whose names are those of the source with ‘.o’ substituted for ‘.c’. The ‘.o’ file is

normally deleted, however, if a single C program is compiled and loaded all at the same time.

In the same way, arguments whose names end with ‘.s’ are taken to be assembly source programs and are

assembled, producing ‘.o’ files.

The following options are interpreted by cc. See ld(1) for load-time options.

−c Suppress the loading phase of the compilation, and force an object file to be produced even if

only one program is compiled.

−w Suppress warning diagnostics.

−p Arrange for the compiler to produce code which counts the number of times each routine is

called; also, if loading takes place, replace the standard startup routine by one which automati-

cally calls monitor(3) at the start and arranges to write out a mon.out file at normal termination of

execution of the object program. An execution profile can then be generated by use of prof (1).

−O Invoke an object code improver. Do not use on programs that contain asm statements as the

result may not be correct.

−i Suppress optimizations that are incorrect when memory locations might spontaneously change

value. C Memory mapped device register registers have this property. The −i option is ignored

when −O is not present.

−S Compile the named C programs, and leave the assembler-language output on corresponding files

suffixed ‘.s’.

−E Run only the macro preprocessor on the named C programs, and send the result to the standard

output.

−C Prevent the macro preprocessor from removing comments.

−o output

Name the final output file output. When this option is used, cc leaves any existing file named

a.out undisturbed.

−v List the utilities cc calls and their arguments on standard output. Information produced by the −v

verbose flag is useful for debugging.

−vn List the utilities cc would call and their arguments. Cc does not actually call the utilities. The

only result is the list -- file is not compiled.

−Dname=def

−Dname Define the name to the preprocessor, as if by ‘.sp 4800u

define’. If no definition is given, the name is defined as ‘1’.

−Uname

Remove any initial definition of name. (The C preprocessor supplies initial definitions of ‘1’ for

the symbols ‘‘ns16000’’ and ‘‘unix’’.)

−Idir ‘#include’ files whose names do not begin with ‘/’ are always sought first in the directory of the

file argument, then in directories named in −I options, then in directories on a standard list. Stan-

dard list is /usr/include or /usr/NSC/include for cross-support.

1

CC(1) General Commands Manual CC(1)

−Bstring

Find substitute compiler passes in the file or path named string. −B appends cpp (for preproces-

sor), ccom (for the compiler proper), or c2 (for the optimizer) to string. If string is not specified,

the default is /usr/c/o.

−t[p02]

Find only the designated compiler passes in the file or path whose names are constructed by a −B

option. p specifies the preprocessor, 0 specifies the compiler, and 2 specifies the optimizer. In the

absence of a −B option, the string is taken to be /usr/c/n.

−g Print line numbers as comments in the assembly language source when the -S flag is also given.

Otherwise, it calls the assembler with the −g flag, which causes the assembler to emit more sym-

bol table information. See as(1) for details.

−F Gives fast access to global variables. It locates all non-extern declarations of variables in the local

static base area; there is no common area. This results in a considerable increase in speed as all

variable accesses in the module that declared the variable are SB relative, not external. Note that

only one non-extern declaration of each variable in the whole program is possible. This option

increases the object file size and the start-up time for a program, so is most useful for programs

that execute for a long time and do not declare large uninitialized arrays.

−q Pass this switch to the assembler which then puts the link table relative to the SB register. This

speeds up execution time of external calls and access time of external variables. See as(1).

Cc assumes that other arguments are loader option arguments, C-compatible object programs, typically pro-

duced by an earlier cc run, or libraries of C-compatible routines. These programs are loaded (in the order

given) to produce an executable program with name a.out.

FILES
file.c input file

file.o object file

file.s assembly file

a.out loaded output

/usr/tmp/ctm? /tmp temporary

/lib/cpp preprocessor

/lib/ccom compiler

/usr/c/occom backup compiler

/lib/c2 opttional optimizer

/lib/crt0.o run-time startoff

/lib/mcrt0.o startoff for profiling

/lib/libc.a standard library, see (3)

/usr/include standard directory for ‘#include’ files

SEE ALSO
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978

B. W. Kernighan, Programming in C—a tutorial

D. M. Ritchie, C Reference Manual

as(1), monitor(3), prof(1), ddt(1), ld(1)

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self-explanatory. Occasional messages may be pro-

duced by the assembler or loader.

CROSS-SUPPORT
In a cross-support environment cc is called nmcc. Temporary files are stored on /tmp instead of /usr/tmp.

The default substitute compiler passes are in /usr/NSC/lib/o for −B and in /usr/NSC/lib/n for −t.

BUGS
The compiler currently ignores instructions to put char, unsigned char, short or unsigned short variables

in registers. It previously produced poor, and in some cases incorrect, code for such declarations.

2

CC(1) General Commands Manual CC(1)

The NS16000 does not support signed bitfields so all bitfields are unsigned. However if a bitfield is

declared as int or long instead of unsigned the compiler will generate int operations and comparisons on it

rather than unsigned. The bitfield will always be a positive number.

Nested assignment statements do not always preserve the types of the variables being assigned. For exam-

ple:

int a,c;

short b;

a=b =c;

will not always result in a only getting the low order 16 bits of c . It will often get the whole 32 bits. To be

safe use:

b=c;

a=b;

in this situation.

Post-incrementing or post-decrementing a bit field (for example, ‘‘d*a.b++’’) in an expression does not

work. Cc only allows identifiers up to 31 significant characters because of an assembler restriction.

3

