
GENIX Assembler Reference Manual

September, 1983

GENIX Assembler Reference Manual 1

1. Introduction

The purpose of this document is to describe the assembler provided on the GENIXTM development system.

The assembler is also part of the GENIX cross-support package. This manual should be read with the

NS16000TM Programmer’s Reference Manual as a reference to the instruction set.

This manual assumes an understanding of the NS16000 family architecture and some familiarity with

assembly language programming. If greater detail is needed on assembly language programming the

NS16032 see the NS16000 Cross-Assembler User’s Manual, which describes a related assembler.

1.1. Assembler Overview

1.1.1. General Description

The assembler functions as a component of the GENIX environment or as a part of the GENIX cross-support

package available under Berkeley 4.1bsd UNIX
1 on a VAX2. It is inv oked explicitly when a user issues the

as command under GENIX or nasm command under UNIX or implicitly when used by compilers to generate

object code from compiler generated assembler source.

The assembler accepts a source file as input and produces an object code file which includes a text (code)

segment, an initialized data segment, and a symbol table, in a form acceptable to the GENIX linker ld(1).

Each object code file produces one NS16000 software module when loaded.

The source file is composed of statements of two kinds: directives and instructions. The syntax and seman-

tics of all the instructions except LXPD are described in the NS16000 Programmer’s Reference Manual,

while the syntax and semantics of all the directives and the LXPD instruction are contained in this manual.

When the assembler finds an error it provides the relative character offset and an error message through

standard output, to the invoking process. Depending on when the error was discovered, the character offset

provided is either the beginning of the line or what the assembler considers the offending field or subfield.

Most errors will inhibit the assembler from generating an object file.

1.1.2. Features

The GENIX assembler provides more features than a basic assembler:

- extensions to common features, e.g., unary operators for one’s complement and complement of the

least significant bit.

- features supporting the NS16000 family modular software.

- features supporting the use of procedures in assembly language.

The assembler minimizes the size of any displacement, including those with references and forward refer-

ences to labels or expression with symbols.

The use of symbols is extended to allow a symbol to represent not only an address, but any leg al operand

such as an addressing mode (a way to calculate an address). The assembler also has directives which can

be used to separate instructions and data interspersed in the source file into separate text (code) and data

segments. The directives which are used to separate the text and code segments are part of a group of

"scoped" directives. The scoped directives are also the directives which define the addressing mode for

symbols. Each of the scoped directives has a variable "storage class" assoociated with it. It is this storage

GENIX, and NS16000 are trademarks of National Semiconductor Corporation.

1 Unix is a trademark of Bell Laboratories.

2 VAX is a trademark of Digital Research Corporation.

GENIX was derived from 4.1bsd which was developed at the University of California at Berkeley.

The information in this document is for reference only and is subject to change without notice.

GENIX Assembler Reference Manual 2

class which controls the addressing mode associated with a symbol defined in some particular scope. An

example of a scoped directive is .static. Any symbol declared between a .static directive and another

scoped directive (or the .endseg directive) will refer to a location which is SB-relative. Any data associated

with that location will be stored in the data segment of the module. The scoped directives can be nested up

to sixteen levels. The .endseg directive ends the scope of the directive currently in force.

Certain directives support the modular software features of NS16000 family. For example, .import causes a

link table entry to be generated for a symbol that is external to the assembly. All references to the external

symbol will reference the link table entry. The actual symbol value will be resolved at link time.

The assembler provides directives to support the use of procedures in an assembly language program.

These directives define the start and name of a procedure, the inputs to the procedure, the return values, the

local variables, and the body of the procedure.

2. Metasyntactic Conventions

The following notational conventions are used throughout this document.

item1 | item2 | item3 Vertical bars indicate that one of item1, item2, and item3 must be present.

[text] Brackets indicate that ‘text’ is optional.

text... Elipses indicate that ‘text’ may occur multiple times.

text Boldface text in an example or command line indicates a literal. Elsewhere, bold-

face indicates the defining occurrence of a term.

text Italics (or underlining) is used when a literal is referenced in explanatory text.

3. Symbol Construction

A symbol is a name that has a value. A local symbol only exists for use within the current source file

(software module). A global symbol is placed in the object file for use with other module files. A sym-

bolic address has a value that is a location, referenced by an addressing mode which may be relocatable

(see Chapter 5).

A symbol is composed of an alphabetic character or underscore or percent sign or dot (a-z A-Z _ % .) fol-

lowed by as many as 31 alphanumeric characters, underscores or dots (a-z A-Z _ . 0-9). Symbols may be

predefined, such as instruction mnemonics, or user-defined as labels. Predefined symbols are not case sen-

sitive, that is predefined symbols may be typed in either upper- or lower-case. However, user symbols are

differentiated based on case unless the assembler is invoked with the -i (ignore case) option. If -i is used,

all upper-case characters in symbol names are converted to lower-case. A label should not have the name

of any valid command, operator, or addressing mode. A label may be referenced before it is defined, and it

may be defined only once.

4. Constants

A constant is a fixed value. A constant’s value may be numeric, either integer or floating-point, or an

ASCII character or string.

4.1. Numeric Constants

Integer values may be decimal (decimal is the default radix for integer constants, a decimal value is also

indicated by d’digits), binary (b’digits), octal (o’digits or q’digits), or hex (h’digits or x’digits).

Floating-point values are indicated by the presence of a decimal point or the E or e exponent flag. f ’ fol-

lowed by eight hex digits will be interpreted as an encoded short floating-point value, and l’ followed by

sixteen hex digits as an encoded long floating-point value.

GENIX Assembler Reference Manual 3

Examples:

decimal constants: 1

d’12345678

binary constants: b’1

b’111100001111000011110000

octal constants: o’32570

q’7700

hexadecimal constants: h’e0

x’f012ff89

floating constants: -5.0705

9.0e+34

f’e01267ac

l’12a945bd4266ecf0

Decimal constants are sign-extended to double-words. Hex, octal and binary constants are zero-extended,

and floating constants are encoded in either long or short floating-point format, depending on what instruc-

tion or directive it is used with. Short floating-point numbers range from a most positive value of

3.40282346E38 to a least positive value of 1.17549430E-38, and the corresponding negative values. Long

floating-point point numbers range from a most positive value of 1.79769313486231305E308 to a least

postive value of 2.22507385850720100E-308, and the corresponding negative range. Integer constants

may have the range from -2147483648 to 2147483647 for double-word constant.

4.2. ASCII Character or String Constants

Character or string values are specified with single or double quotation marks. If a string contains a quote

character it may be quoted by the use of an additional quotation mark, as ’it’’s’ or "it""s".

Examples:

ASCII constants: "@"

’Wow!’

If the string requires less space than allocated for its storage, the string is zero-extended to fill the storage.

GENIX Assembler Reference Manual 4

5. Addressing Modes

An addressing mode is one of the NS16000 general addressing modes (see Figure 1).

Addressing Mode Syntax

Register Rn or Fn

Immediate constant or an expression evaluat-

ing to a constant

Absolute @address

Register Relative offset(Rn)

offset(FP)

offset(SP)

offset(SB)

offset(PC)

Memory Relative offset_ 2(offset_ 1(FP))

offset_ 2(offset_ 1(SP))

offset_ 2(offset_ 1(SB))

Top of Stack TOS

External EXT(index)+offset

or EXT(index) ;where offset=0

Scaled Indexed addr. mode[Rn:B,W,D,or Q]

Figure 1. Addressing Mode Syntax

The address, index, or offsets required by an addressing mode are specified with a constant.

6. Expressions

Expressions are constructed by combining constants and addressing modes with operators.

Examples:

24

R6

* - 10

10 + 40(FP)

(4+4)(SP)

(0(FP)-3(FP))+((h’a0(4(SB))-(0(4(SB))+2

((EXT(3)+(12(FP)-8(FP)))-(EXT(3)+b’10000))+*

6.1. Expression Evaluation

A operand is evaluated in order of the precedence of its operators. Evaluation is done from left to right

between operators of equal precedence. The precedence of the operators may be overriden with the use of

parentheses to group operators.

In general, sensible combinations of constants, relocation modes and operators are allowed. For example,

10(FP)+15 is allowed and results in a value 25(FP), while 10(FP)+15(SB) is not allowed. The following

paragraphs give the rules for allowed combinations of constants, addressing modes and operators. Each

descriptive paragraph is introduced with a line indicating the terms and operators discussed in the para-

graph.

(constant) (any operator) (constant) produces (constant)

Any operand can combine any two constants to produce a constant.

GENIX Assembler Reference Manual 5

(FP,SP,SB,EXT,register relative mode) (+,OR,XOR,AND,*) (constant) produces (addressing mode)

The +, OR, XOR, AND, and * operators can combine a constant and a frame pointer relative, stack

pointer relative, static base register relative, external addressing or register relative mode. The opera-

tion is performed to the offset of the addressing mode.

Either operand may be the first operand.

(FP,SP,SB,EXT,register relative mode) (/,MOD,SHL,SHR) (constant) produces (addressing mode)

A constant and frame pointer relative, stack pointer relative, static base register relative, external

addressing or register relative mode can be combined with the /, MOD, SHL, or SHR operators.

The operation is performed to the offset of the addressing mode.

The constant must be the second operand.

(FP,SP,SB,EXT mode) (-) (FP,SP,SB,EXT mode) produces (constant)

A frame pointer relative, stack pointer relative, static base register relative, or external (using the

same link table index) addressing mode may be subtracted from an addressing mode using the same

addressing mode.

The operation is performed between the offsets of the addressing modes to produce a constant.

(memory relative mode) (+,OR,XOR,AND,*,/,MOD,SHL,SHR) (constant) produces (same addressing mode)

The operation is performed between the outer offset and constant.

(memory relative mode) (-) (memory relative mode) produces (constant)

The dedicated register and the inner offset must be the same in both memory relative references. The

outer offsets are subtracted.

6.2. Current Location Counter

An asterisk ‘‘*’’ or the reserved token PC is interpreted as the value of the location counter for the current

instruction.

6.3. Operators

An operator specifies an operation to be performed upon one or more operands. There are three levels of

precedence among operators. The higher an operator’s lev el of precedence, the more tightly it binds.

(1) highest level (unary operators)

+ Identity.

- Neg ation.

com One’s complement of operand.

not Complement least significant

bit.

ext The constant operand is the

index into the link table.

@ The constant expr becomes the

absolute memory address

specifying absolute addressing

mode.

GENIX Assembler Reference Manual 6

(2) middle level

* Multiply the first operand by

the second.

/ Divide the first operand by

the second. Follows the details

of the NS16000 DIVD instruction

for integers.

mod Modulus of the first operand

with base of the second operand.

Follows the detail of the NS16000

MODD instruction for integers.

and Bitwise logical AND of the first

operand with the second.

shl Shift left the first operand by

second operand positions with

zero extension.

shr Shift right the first operand by

second operand positions with

zero extension.

(3) lowest level

+ Add first operand to second

operand.

- Subtract second operand from

first operand.

or Bitwise logical OR of first

operand with second operand.

xor Bitwise logical XOR of first

operand with second operand.

:b|:w|:d Set length of expression to

specified length: byte, word

or double-word. Produces an

error if expression is too long.

6.4. Displacements and Expression Lengths

Most assembly statements which take operands allow the operand to be an expression. Depending upon the

particular statement being constructed, forward references of symbols utilized within the expression are

acceptable. The assembler cannot determine the length of an operand constructed from expressions with

forward references until the forward reference is defined. Instead the assembler attempts to determine how

many bytes to allocate for each displacement it assembles. It uses the following rules:

(1) If the length of the expression is defined, then that length is used.

(2) If the expression is composed of one undefined symbol plus or minus a constant and the

length is undefined, then one byte is allocated, an entry is made in the span dependent

instruction link-list, and the actual size required to hold the displacement is determined at the

completion of the initial pass.

(3) If the expression can be evaluated and the length is not defined, then the minimum number of

bytes needed to store the displacement is used.

GENIX Assembler Reference Manual 7

7. Assembly Language Statements

A statement consists of zero to four fields. The fields are label, command, operands, and comment.

Format:

[LABEL:] [COMMAND [OPERANDS]] [;COMMENT]

The occurrence of a field may be required or forbidden within a particular assembly language construct, or

it may be left as an option to the programmer.

7.1. The Label Field

A label is used to assign a value to a symbol.

Format:

LABEL: | LABEL:: | LABEL:-

A single colon following the label name indicates a local symbol definition, a double colon indicates a

global symbol, and a colon minus indicates that the symbol is both global (exported) and external

(imported) at the same time. The colon minus form is useful for globally defined procedures which are

often called from within the same module thus necessitating an external call.

7.2. The Command Field

A command is used to specify an NS16000 instruction or to control the assembler.

Example:

WAIT ;A command without label or operands.

A command to specify an NS16000 instruction is called an instruction mnemonic (see Chapter 8). A

command to control the assembler is called an assembler directive (see Chapter 9). A command may be

typed in any combination of upper- and lower-case characters.

7.3. The Operand Field

Operands may be required by a symbol definition or a command.

Example:

movd 8(fp),r0 ;A command with operands.

An operand may be a constant or addressing mode specification or expression. A command imposes its

own restrictions on the number of operands; for example, a symbol definition has a single constant operand.

7.3.1. Constant Operands

A constant operand is a constant or an expression that evaluates to a constant value.

7.3.2. Addressing Mode Operands

An addressing mode operand is a NS16000 addressing mode or an expression that evaluates to an

addressing mode.

7.4. The Comment Field

In any assembly language statement a comment field is always optional. A semicolon begins a comment

unless the semicolon is within an ASCII constant; the comment continues until the end of the line.

GENIX Assembler Reference Manual 8

8. Instruction Mnemonics

This section lists the NS16000 instruction set, describes the assembler-defined instruction LXPD and dis-

cusses restrictions on operands.

8.1. NS16000 Instruction Mnemonics

The following legend is used to describe the options available for each instruction described in this section:

i B,W,D (byte,word,double-word)

f F,L (floating,long)

op,op1,op2 general addressing mode

quick sign extended integer (4 bits)

disp a displacement

cons4 unsigned constant (4 bits)

cons3 unsigned constant (3 bits)

cons5 unsigned constant (5 bits)

reg general register (3 bits)

reglist a list of general purpose registers

enclosed in brackets "[]"

cfglist a list of configuration register

bits enclosed in brackets "[]"

procreg processor register:

SP, SB, MOD, INT, PSR, FP, SP, UPSR

mmureg memory management register: BPR0,

BPR1, BPR2, BPR3, PF0,PF1, PF2, PF3,

SCA, SCB, BC, PTB0, PTB1, MSR, EIA

cond condition code test: EQ, NE, LT, LE,

GT, GE, LO, HI, LS, HS, FS, FC, CS, CC

label a PC relative addressing mode

xproc external procedure name

GENIX Assembler Reference Manual 9

INTEGER INSTRUCTIONS

MOVi op1,op2 ;move

ADDi op1,op2 ;add

ADDCi op1,op2 ;add with carry

SUBi op1,op2 ;subtract

SUBCi op1,op2 ;subtract with carry

CMPi op1,op2 ;compare

NEGi op1,op2 ;negate

ABSi op1,op2 ;absolute value

MULi op1,op2 ;multiply

DIVi op1,op2 ;divide

MODi op1,op2 ;modulus

QUOi op1,op2 ;divide w/zero trunc.

REMi op1,op2 ;remainder w/zero tr.

ANDi op1,op2 ;logical AND’ing

ORi op1,op2 ;logical OR’ing

BICi op1,op2 ;bit clear

XORi op1,op2 ;exclusive OR’ing

COMi op1,op2 ;complement

ASHi op1,op2 ;arithmetic shift

LSHi op1,op2 ;logical shift

ROT i op1,op2 ;rotate

MOVXii op1,op2 ;sign extend op1 to op2

MOVZii op1,op2 ;zero extend op1 to op2

QUICK INTEGER INSTRUCTIONS

MOVQi quick,op ;move quick integer

ADDQi quick,op ;add quick integer

CMPQi quick,op ;compare quick integer

EXTENDED INTEGER INSTRUCTIONS

MEIi op1,op2 ;multiply extended integer

DEIi op1,op2 ;divided extended integer

BOOLEAN INSTRUCTIONS

NOTi op1,op2 ;not

Scondi quick,op ;conditional set

GENIX Assembler Reference Manual 10

BIT INSTRUCTIONS

TBITi op1,op2 ;test bit

SBITi op1,op2 ;set bit

CBITi op1,op2 ;clear bit

SBITIi op1,op2 ;set bit interlocked

CBITIi op1,op2 ;clear bit interlocked

IBITi op1,op2 ;invert bit

CVTP reg,op1,op2 ;convert bit pointer

FFSi op1,op2 ;find first set bit

FIELD INSTRUCTIONS

EXTi reg,op1,op2,disp ;extract field

INSi reg,op1,op2,disp ;insert field

EXTSi op1,op2,cons3,cons5 ;extract field short

INSSi op1,op2,cons3,cons5 ;insert field short

STRING INSTRUCTIONS

MOVSi [B[,]][U|W] ;move string

MOVST [B[,]][U|W] ;move string with translate

CMPSi [B[,]][U|W] ;compare string

CMPST [B[,]][U|W] ;compare string with translate

SKPSi [B[,]][U|W] ;skip string

SKPST [B[,]][U|W] ;skip string with translate

PA CKED DECIMAL INSTRUCTIONS

ADDPi op1,op2 ;add packed decimal

SUBPi op1,op2 ;subtract packed decimal

ARRAY INSTRUCTIONS

INDEXi op1,op2 ;calculate array index

CHECKi reg,op1,op2 ;check array index

BLOCK INSTRUCTIONS

MOVMi op1,op2,cons4 ;move multiple

CMPMi op1,op2,cons4 ;compare multiple

GENIX Assembler Reference Manual 11

PROGRAM CONTROL INSTRUCTIONS

JUMP op ;jump

BR label ;unconditional branch

Bcond label ;conditional branch

CASEi op ;computed branch

ACBi quick,op,label ;add, compare, and branch

JSR op ;jump to subroutine

BSR label ;branch to subroutine

RET disp ;return from subroutine

CXP xproc ;call external procedure

CXPD op ;CXP w/descriptor

RXP disp ;return from external proc.

RETI ;return from interrupt

RETT disp ;return from trap

PROCESSOR SERVICE INSTRUCTIONS

SAVE reglist ;save processor registers

RESTORE reglist ;restore processor registers

ENTER reglist,disp ;enter procedure

EXIT reglist ;exit procedure

LPRi procreg,op ;load processor register

SPRi procreg,op ;store processor register

ADJSPi op ;adjust stack pointer

BISPSRi op ;bit set in PSR

BICPSRi op ;bit clear in PSR

SETCFG cfglist ;set configuration

MISCELLANEOUS INSTRUCTIONS

NOP ;no operation

WAIT ;wait

ADDR op1,op2 ;calculate address

ADDRB op1,op2 ;calculate address, truncate to byte

ADDRW op1,op2 ;calculate address, truncate to word

LXPD xproc,op ;load external procedure descriptor

SVC ;supervisor call

FLAG ;flag trap

BPT ;breakpoint trap

DIA ;diagnostic

GENIX Assembler Reference Manual 12

FLOATING-POINT UNIT INSTRUCTIONS

MOVf op1,op2 ;move

MOVLF op1,op2 ;move long to floating

MOVFL op1,op2 ;move floating to long

MOVif op1,op2 ;float

CMPf op1,op2 ;compare

ADDf op1,op2 ;add

SUBf op1,op2 ;subtract

MULf op1,op2 ;multiply

DIVf op1,op2 ;divide

NEGf op1,op2 ;negate

ABSf op1,op2 ;absolute value

ROUNDfi op1,op2 ;round

TRUNCfi op1,op2 ;truncate

LFSR op ;load FSR

SFSR op ;store FSR

MEMORY-MANAGEMENT UNIT INSTRUCTIONS

LMR mmureg,op ;load MMU register

SMR mmureg,op ;store MMU register

RDVAL op ;read address validate

WRVAL op ;write address validate

MOVSUi op1,op2 ;move supervisor to user

MOVUSi op1,op2 ;move user to supervisor

8.2. LXPD Instruction

LXPD xproc,index

LXPD is an instruction defined by the assembler. This instruction is mainly used by the compilers to look

at the external procedure descriptor. The instruction generated in the object file is the addr instruction.

However, the use of lxpd imposes certain restrictions. It is legal only if the xproc uses external addressing

mode with zero as offset. Index is the link table index. The operation is:

dest := MEMORY[MEMORY[MOD+4] + index*4]

8.3. Notes and Restrictions

Certain restrictions apply to the operands of some instructions.

- An operand that is the destination of an instruction may not be immediate.

- The size of immediate operands must be within the limits set by the [B,W,D] choice, (or, as in

floating-point instructions, the limits set by the [F,L] choice).

Note: If the first operand of the ADDPi or SUBPi is a constant the processor expects BCD

encoding. The assembler only generates two’s complement encoding. However a valid BCD

number preceeded by h’ will be correctly encoded, since both hexadecimal and BCD use the

same encodings within the BCD range.

GENIX Assembler Reference Manual 13

The following examples should make these points clear:

ADDD R0,3 ;illegal. destination is immediate

MOVB 345,R0 ;illegal. 345 cannot fit in a byte

MOVB 145,R0 ;legal. 145 can fit in a byte

MOVF 1.1e56,F0 ;illegal. 1.1e56 is too big for float

MOVL 1.1e56,F0 ;legal. it is legal for long format

ADDPB 15,R0 ;illegal BCD value written as h’0f

ADDPB 35,R0 ;legal BCD value written as h’23

;adds decimal 23 to R0

ADDPB h’23,R0 ;legal BCD value generates the same instruction

;as the previous example

ADDPB h’3A,R0 ;illegal BCD value

9. Assembler Directives

There are three classes of assembler directives for controlling the production of the object file:

- Addressing mode directives

- Procedure interface directives

- Storage directives

A fourth class, the program listing directives, controls the production of program listings.

9.1. Addressing Mode Directives

The addressing mode directives control the location into which instructions and data are loaded. The

addressing mode directives set the location counter, or current address, and the addressing mode used to

access symbols that are defined while the directive is in effect. The location counter is assigned an address

that is unrelocatable (absolute) or relocatable (relative to the frame pointer, stack pointer, static base regis-

ter, program segment, or a link table entry). Once an addressing mode directive has set the addressing

mode and relocatability of the current address, all instructions and data are entered relative to the same

scope until changed by another addressing mode directive.

The .endseg directive ends the scope of the current addressing mode directive. If a new addressing mode

directive is giv en instead of the .endseg, the new directive overrides the effect of the first, without ending its

scope. Instead the previous directive is placed on a stack. If this new directive is ended by a .endseg direc-

tive, the stack is popped and the previous scope is restored. The stack has a maximum depth of sixteen lev-

els. This maximum includes any implied by the procedure interface directives (see Section 9.2).

Instructions may only appear in program segment.

With an absolute, static base register relative, program counter relative, or link table entry relative address,

any labels are assigned to the current address and the current address is then incremented by the size of the

allocated instruction or data.

With a frame pointer relative or stack pointer relative address, the address is decremented by the size of the

data and any labels are then assigned to the current address. In the case of the stack pointer relative

addresses, actual address calculatation is done at the end of the segment so that the last address assigned

will be the first available address on the stack.

No label may appear on a .LOC, .DSECT, .STATIC, .PROGRAM, .MODULE, or .ENDSEG directive.

The addressing mode directives are as follows:

GENIX Assembler Reference Manual 14

9.1.1. .DSECT

.DSECT

The .DSECT directive sets the current address to immediate zero. The storage class is absolute. No

instructions or data are generated (it is used for defining symbols). The defined symbols are most useful as

offsets in register relative addressing modes.

9.1.2. .ENDSEG

.ENDSEG

The .ENDSEG directive restores the current address to its address and scope before the most recent .LOC,

.DSECT, .PROGRAM, or .STATIC directive. A 16 level stack of nested scopes is maintained at all times.

The .PROC directive also uses this stack.

9.1.3. .EXPORT

.EXPORT name,...

The .EXPORT directive makes all of the listed names into global symbols. These symbols are made avail-

able to other modules through the software module mechanism. That is the symbol may be accessed from

another module through that module’s link table (see .IMPORT) via the external adddressing mode.

9.1.4. .EXPORTP

.EXPORTP name,...

The .EXPORTP directive makes all of the listed names into global symbols and marks them as being proce-

dure entry points. It is an error for a name that has been exported as a procedure to be imported as data.

9.1.5. .IMPORT

.IMPORT name,...

The .IMPORT directive creates a link table entry that will contain a pointer to data for each symbol name.

It is an error for these names to be defined within the current module. The linker will make the link table

entries point to the appropriate data symbols in other modules. Link table entries are allocated in the order

in which the .IMPORT directives appear. The assembler gives the value EXT(i) + 0 to the symbol, where i

is the index of the link table entry just created.

9.1.6. .IMPORTP

.IMPORTP name,...

The .IMPORTP directive creates a link table entry that will contain an external procedure descriptor for

each symbol name. If this name is also defined within the module, then the assembler will make the link

table entry point to the local symbol regardless of whether the symbol has been exported or not. This name

should be a procedure entry that is to be called with CXP or CXPD. It is an error for one module to export

a data symbol that another module imports from outside its module as a procedure.

9.1.7. .LOC

.LOC address

The .LOC directive sets the current address, and addressing mode. The address may be immediate, abso-

lute, or relative to the frame pointer, stack pointer, static base register, program counter, or a link table entry

(external data area). Instructions may only be used after a .LOC if the directive sets the mode to PC-rela-

tive addressing. Initialized data may only be used after a .LOC directive that sets the mode to PC-relative

or SB-relative addressing.

GENIX Assembler Reference Manual 15

9.1.8. .PROGRAM

.PROGRAM

The .PROGRAM directive sets the current address to one byte past the last allocated address in the program

storage class. Any symbols defined while the directive is in effect will have PC-relative addresses. Instruc-

tions and data will be placed in the text section of the object file.

9.1.9. .STATIC

.STATIC

The .STATIC directive sets the current address to one byte past the last allocated address in the static base

storage class. Any symbols defined while the directive is in effect will have SB-relative addresses. Data

will be placed in the initialized data section of the object file.

9.2. Procedure Interface Directives

The procedure interface directives support the software module mechanism described in NS16000 Pro-

grammer’s Reference Manual. They allow assembly language routines to have a format similar to those

used in high-level languages, i.e., designated structures for declaring input parameters, return values and

local variables separate from the routine’s code. The following example illustrates the organization of a

procedure which uses the procedure interface directives.

Example:

myproc: .PROC

param1: .blkb

param2: .blkb

.RETURNS

ret: .blkb

.VAR [r1,r2]

local1: .blkb

local2: .blkb

.BEGIN

... ;code for prodedure myproc

.ENDPROC

Myproc is a procedure with parameters param1 and param2, return value ret, and local variables local1 and

local2. Registers R1 and R2 are saved and restored.

If .PROC is used .VAR, .BEGIN, and .ENDPROC are required, .RETURNS is optional. No label may

appear on a .RETURNS, .VAR, or .BEGIN directive.

9.2.1. .BEGIN

.BEGIN

The .BEGIN directive sets the current address to one greater than the last program counter relative address

allocated; that is, .BEGIN implies the equivalent of .PROGRAM directive. Subsequent instructions and

data will be in the text section of the object file; data will be addressed relative to the PC-register. The

name of the procedure is assigned the address of the first byte of the procedure. .BEGIN generates an enter

instruction using the register list specified in the .VAR directive and a displacement the size of the .VAR

scope, i.e., the size of the local variable storage.

GENIX Assembler Reference Manual 16

9.2.2. .ENDPROC

.ENDPROC [disp]

The .ENDPROC directive generates an EXIT instruction, which restores the registers specified in the .VAR

statement. The .ENDPROC statement also generates a RET or RXP instruction depending on whether the

label on the corresponding .PROC directive was local or global. Usually the directive is used without an

operand, in which case the operand of the RET or RXP instruction is the size of the corresponding .VAR

scope. If an operand is used with the directive, the assembler uses that operand as the operand for the RET

or RXP instruction.

9.2.3. .MODULE

.MODULE name

The .MODULE directive starts a new software module. Only one module directive is allowed in a source

file.

9.2.4. .PROC

.PROC

The .PROC directive declares a procedure, function, or subroutine. The name of the procedure is supplied

in the label, which may be global or local (local is illustrated in the example). A local procedure is called

with a JSR or BSR instruction. A global procedure is called with a CXP or CXPD instruction. This direc-

tive sets the storage class to local relocation, the following parameters, if any, will be at positive offsets

from the frame pointer register.

Storage allocated after the .PROC directive is for parameters to the procedure. The frame pointer offsets

are assigned so that the last storage allocated is at the lowest available offset. The lowest available offset is

eight for local procedures (this reserves space for saving the program counter) and twelve for global proce-

dures (this reserves space for saving the program counter and the MOD register).

9.2.5. .RETURNS

.RETURNS

The .RETURNS directive sets the current address back to the start of the parameter block. The space allo-

cated in this section overlaps the space in the parameter block, which allows the return value location to be

accessed by a new name.

9.2.6. .VAR

.VAR [[Rn,...]]

The .VAR directive includes an optional register list, which is used in an ENTER instruction. The register

list is enclosed in brackets. The .VAR directive sets the current address to the address of the byte preceding

the saved register block. Any local variables declared between the .VAR and the .BEGIN will be at nega-

tive offsets from the frame pointer. The stack adjustment in the ENTER instruction is the number of bytes

specified in the local section.

9.3. Storage Directives

The storage directives allocate and initialize areas of memory.

9.3.1. .ALIGN

.ALIGN base,distance

The .ALIGN directive inserts uninitialized bytes into the module file until the current address modulo base

equals distance. The distance is optional, with a default value of zero. Both operands must be constants.

No label may appear on a .ALIGN directive.

GENIX Assembler Reference Manual 17

9.3.2. .BLKB, .BLKW, .BLKD, .BLKF, .BLKL

.BLKB count ;element size 1 byte

.BLKW count ;element size 2 bytes

.BLKD count ;element size 4 bytes

.BLKF count ;element size 4 bytes

.BLKL count ;element size 8 bytes

The .BLKB, .BLKW, .BLKD, .BLKF, and .BLKL directives allocate a block of storage whose length, in

elements, is given by an integer constant. The count is optional, with a default size of one. The element

length is implicit in the directive.

9.3.3. .BYTE, .SBYTE, .WORD, .SWORD, .DOUBLE, .SDOUBLE, .FLOAT , .LONG

.BYTE [[repetitions]value,...] ;element size 1 byte

.SBYTE [[repetitions]value,...] ;element size 1 byte

.WORD [[repetitions]value,...] ;element size 2 bytes

.SWORD [[repetitions]value,...] ;element size 2 bytes

.DOUBLE [[repetitions]value,...] ;element size 4 bytes

.SDOUBLE [[repetitions]value,...] ;element size 4 bytes

.FLOAT [[repetitions]value,...] ;element size 4 bytes

.LONG [[repetitions]value,...] ;element size 8 bytes

The .BYTE, .SBYTE, .WORD, .SWORD, .DOUBLE, .SDOUBLE, .FLOAT , and .LONG directives allo-

cate and initialize storage area. The value must be small enough to fit within the storage available. .BYTE

may have either a signed or unsigned value between -128 and 255. .SBYTE may only be used for a value

between -128 and 127. Similarly .WORD may use either a signed or unsigned value between -32768 and

65535, while .SWORD may only use a value between -32768 and 32767.

The signed versions of these directives allow the assembler to produce an error message if a generated

signed value is too large for storage. .SDOUBLE is the same as .DOUBLE.

Hex, octal, and binary constants are treated by the assembler as 32-bit two’s-complement quantities; thus

x’ffffffff is -1, while x’ff is 255.

The number of repetitions must be a constant. The value may be an expression that evaluates to a constant.

Both operands are optional, with a default for the number of repetitions of one. If no arguments are speci-

fied, a block of storage of the size specified by the directive is allocated with the current address. If one or

more operands are specified, then each value is stored into one element of the length implicit in the direc-

tive.

The .FLOAT and .LONG directives require floating constants.

If a string constant is used for a value, then enough elements are allocated for the value to represent the

entire string. Strings are stored with the first (leftmost) byte in the lowest address. The string is padded on

the right with null characters to fill an integral number of elements.

GENIX Assembler Reference Manual 18

9.3.4. .COMM

.COMM name,expr,...

The .COMM directive requests the listed pairs from other modules. They hav e the attributes of external

(common) data type and a specified size. The specified expr must reduce to a constant.

9.3.5. .FIELD

.FIELD [length]value,...

The .FIELD directive initializes arbitrary-length bit fields. A field is created for each element. The length

specifies the field size in bits, and the value specifies its contents. The total amount of allocated storage is

rounded up to the nearest byte at the end of the statement. Both operands must be constants.

9.4. Program Listing Directives

The program listing directives control the production of program listings.

9.4.1. .EJECT

.EJECT

The .EJECT directive causes a page eject. The assembler statement with the directive is not printed in the

program listing.

9.4.2. .LIST and .NOLIST

.NOLIST

...

.LIST

The .NOLIST directive turns off program listing until the next .LIST directive. Error messages are printed

ev en if the .NOLIST directive is in effect.

9.4.3. .SUBTITLE

.SUBTITLE string

The .SUBTITLE directive causes a subtitle to be printed as the second line of every page. The string may

be up to eighty characters long. The subtitle may be redefined an arbitrary number of times.

9.4.4. .TITLE

.TITLE string

The .TITLE directive causes its string argument to be printed as the top line of every page. The string may

be up to eighty characters long. The title may be redefined an arbitrary number of times.

9.4.5. .WIDTH

.WIDTH columns

The .WIDTH directive sets the line length of the output device for the program listing. The operand must

be an integer constant between 80 and 132.

GENIX Assembler Reference Manual 19

10. Programming Examples

The following sections provide sample assembly language programs which illustrate assembly language

programming techniques.

10.1. Factorial Numbers

;A parameter passed in register 0 is returned as the corres-
;ponding factorial number in register 0.
;

.PROGRAM

fac: .DOUBLE 0

.DOUBLE 1

.DOUBLE 2

.DOUBLE 6

.DOUBLE 24

.DOUBLE 120

.DOUBLE 720

.DOUBLE 5040

.DOUBLE 40320

.DOUBLE 362880

.DOUBLE 3628800

.DOUBLE 39916800

.DOUBLE 479001600

num: CMPD 12,R0 ;is parameter in range?

BHI error ;if not, return an error

MOVD fac[R0:D],R0 ;otherwise, index into

;the array for result

RET 0

error: BISPSRB b’00100000 ;set the error flag

RET 0

This procedure returns any of the factorial numbers which can be represented with a double-word integer.

The factorial of number n is the product 1 X 2 X 3 X ... X n. If the procedure is passed a parameter whose

factorial cannot be represented as a double-word integer, it returns the integer unchanged and sets the F

code of the PSR.

GENIX Assembler Reference Manual 20

10.2. Square Root Calculation

;The closest integer less than, or equal to, the square root
;of an integer passed on the stack is returned on the stack.
;

.PROGRAM

sqrt: .PROC

.VAR [R0,R1,R2]

.BEGIN

MOVQD 1,R0 ;start guessing at one

MOVD 8(FP),R1 ;get the parameter

CMPQD 0,R1 ;is it a good parameter?

BLE error ;if not, return an error

loop: MOVD R1,R2 ;otherwise, make a copy

DIVD R0,R2 ;divide the copy by the guess

CMPD R0,R2 ;is the answer ready?

ADDD R0,R2 ;sum the result with the guess

ASHD -1,R2 ;take their average

MOVD R2,R0 ;make that the new guess

BHI loop ;if not ready, continue

MOVD R0,8(FP) ;return the answer

BR exit ;and exit

error: BISPSRB b’00100000 ;set the error flag

exit: .ENDPROC

This procedure calculates the square root of a positive integer. It uses a successive approximation algo-

rithm. If it is invoked on a nonpositive integer, the integer is returned unchanged and the F code of the PSR

is set.

GENIX Assembler Reference Manual 21

10.3. Ackerman’s Function

;procedure ack(a,b)
; if a = 0 then
; ack = b + 1
; else if b = 0 then
; ack = ack(a - 1,1)
; else ack = ack(a - 1,ack(a,b - 1))
;
;The parameters ’a’ and ’b’ are passed on the stack,with ’b’
;pushed first. The result is returned in register 0.
;

.PROGRAM

ack: CMPQD 0,4(SP) ;if a = 0 then

BEQ a_ is_ 0 ; ack = b + 1

CMPQD 0,8(SP) ;else if b = 0 then

BEQ b_ is_ 0 ; ack = ack(a - 1,1)

;else ack =

MOVD 8(SP),TOS ; push b

ADDQD -1,TOS ; b = b - 1

MOVD 8(SP),TOS ; push a

BSR ack ; ack(a,b - 1)

MOVD R0,TOS ; push ack(a,b - 1)

MOVD 8(SP),TOS ; push a

ADDQD -1,TOS ; a = a - 1

BSR ack ;ack(a - 1,ack(a,b - 1))

RET 8

.ALIGN 4

a_ is_ 0: MOVQD 1,R0 ;case when a = 0

ADDD 8(SP),R0 ;ack = b + 1

RET 8

.ALIGN 4

b_ is_ 0: MOVQD 1,TOS ;case when b = 0

; push b

MOVD 8(SP),TOS ; push a

ADDQD -1,TOS ; a = a - 1

BSR ack ;ack = ack(a - 1,1)

RET 8

This procedure implements Ackerman’s function. It is a well-known example of a recursive procedure

which terminates for all positive integer values of its two parameters.

GENIX Assembler Reference Manual 22

10.4. String Sorting

;procedure string_ sort(array,e_ cnt)
;set flag
;while flag set
; clear flag
; for i = 0 to e_ cnt - 1
; if string(array[i]) > string(array[i+1])
; temp = array[i]
; array[i] = array[i+1]
; array[i+1] = temp
; set flag
;
;The maximum length of a string is ’max_ length’, an imported
;variable. The array address and element count, ’array’ and
;’e_ cnt’, are passed on the stack, with ’e_ cnt’ on top.
;

.MODULE example

.IMPORT max_ length

sort:: .PROC

array: .BLKD

e_ cnt: .BLKD

.VAR [R0,R1,R2,R3,R4,R7]

.BEGIN

BISPSRB b’00100000 ;set flag

MOVD e_ cnt,R3 ; get e_ cnt

ADDQD -1,R3 ; e_ cnt = e_ cnt - 1

loop2: BFC p_ exit ;while flag set

BISPSRB b’00100000 ;clear flag

MOVQD 0,R7 ;for i = 0 ...

loop1: CMPD R3,R7 ; ... to e_ cnt - 1

BEQ loop2

MOVD max_ length,R0 ; set up cmpsbu limit

MOVD array[R7:D],R1 ; set up array[i]

ADDQD 1,R7 ; i = i + 1

MOVD array[R7:D],R2 ; set up array[i+1]

MOVQD 0,R4 ; set up end of string

CMPSBU ;if string(array[i]) ...

BHS loop1 ;...> string(array[i+1])

ADDR array[R7:D],R0 ; address of array[i+1]

MOVD -4(R0),R1 ;temp = array[i]

MOVD 0(R0),-4(R0) ;array[i] = array[i+1]

MOVD R1,0(R0) ;array[i+1] = temp

BISPSRB b’00100000 ;set flag

BR loop1

p_ exit: .ENDPROC

This procedure implements a bubble sorting algorithm for an array of pointers to strings. A bubble sorting

algorithm performs successive exchanges of unordered neighbors.

GENIX Assembler Reference Manual 23

10.5. Bit Scanning

;The addressing for first and last bits of the field are
;passed on the stack. The addressing for the first set bit
;is returned on the stack. The search is started by searching
;until the first double-word boundary. After that the search
;is continued by testing for nonzero double-words. Individual
;bits are tested only after a non-zero double-word is found.
;If no set bits are found, the F code of the PSR is set.
;

scan: .PROC

addr_ f: .BLKD

disp_ f: .BLKD

addr_ l: .BLKD

disp_ l: .BLKD

.RETURNS

addr_ s: .BLKD

disp_ s: .BLKD

.VAR [R0,R1]

.BEGIN

FFSD addr_ f,disp_ f ;search to next double-

;word boundary

BFS p_ count ;is the bit there?

BR exit ;if so, exit

p_ cont: MOVD addr_ f,R0 ;get end address

MOVD addr_ l,R1 ;get beginning address

ADDQD 1,R1 ;move it to next whole

;double-word address

SUBD R1,R0 ;calculate count limit

MOVQD 0,R4 ;zero is while character

SKPSDW ;search to first nonzero

;double-word

FFSD R1,R4 ;search for a set bit

;within the double-word

CMPD addr_ l,R1 ;is its address same as

;for last bit?

BLO p_ exit ;if not, exit

CMPD disp_ l,R4 ;is its displacement

;beyond last bit?

BLS p_ exit ;if not, exit

BISPSRB b’00100000 ;if the search stopped

;beyond the last bit of

;the field, set the flag

BR exit ;and, exit

p_ exit: MOVD R1,addr_ s ;return address of the

;set bit

MOVD R4,disp_ r ;return displacement of

;the set bit

exit: .ENDPROC

This procedure implements a scanning algorithm for the first set bit among an arbitrary length field of con-

tiguous bits in memory.

GENIX Assembler Reference Manual 24

10.6. String Packing and Unpacking

;The addresses of a packed and an unpacked string are passed
;on the stack, with the address of the packed string on top.
;A zero marks the end of either string.
;

.MODULE string_ procs

;

pack:: .PROC

str_ u1: .BLKD

str_ p1: .BLKD

.VAR [R0,R1]

.BEGIN

MOVD str_ u1,R1 ;put the address of the

;unpacked string in r1

MOVD str_ p1,R0 ;put the address of the

;packed string in r0

MOVQD 0,R2 ;initialize the pointer

;to the packed string

loop1: INSB R2,0(R1),0(R0),7 ;pack a character

ADDQD 1,R1 ;get next unpacked char.

ADDQD 7,R2 ;get next packed char.

CMPQB 0,-1(R1) ;at the end of string?

BNE loop1 ;if not, continue

.ENDPROC

;

unpack:: .PROC

str_ u2: .BLKD

str_ p2: .BLKD

.VAR [R0,R1]

.BEGIN

MOVD str_ u2,R1 ;put the address of the

;unpacked string in r1

MOVD str_ p2,R0 ;put the address of the

;packed string in r0

MOVQD 0,R2 ;initialize the pointer

;to the packed string

loop2: EXTB R2,0(R0),0(R1),7 ;unpack a character

ADDQD 1,R1 ;get next unpacked char.

ADDQD 7,R2 ;get next packed char.

CMPQB 0,-1(R1) ;at the end of string?

BNE loop1 ;if not, continue

.ENDPROC

These procedures convert between packed and unpacked ASCII character strings. Because the eighth bit of

an ASCII character is not required for the normal character set, it is possible to economize on memory by

using seven bit fields to represent ASCII characters.

11. Reserved Tokens

In addition to the mnemonics representing machine instructions and assembler directives there are symbols

reserved for register identification and expression operators. For definitions and descriptions of these sym-

bols refer to The NS16000 Programmer’s Reference Manual.

The NS16000 Cross-Assembler Reference Manual may also be useful.

The symbols are valid in either upper- or lower-case, or in combination. Following is a list of the symbols:

GENIX Assembler Reference Manual 25

Symbol Token Type

and operator token

bc memory register

bpr0 memory register

bpr1 memory register

com operator token

eia memory register

ext operator token

f0 floating register

f1 floating register

f2 floating register

f3 floating register

f4 floating register

f5 floating register

f6 floating register

f7 floating register

fp program register

intbase program register

is program register

mod operator token

mod program register

msr memory register

not operator token

or operator token

pc program register

pf0 memory register

pf1 memory register

psr program register

ptb0 memory register

ptb1 memory register

r0 general register

r1 general register

r2 general register

r3 general register

r4 general register

r5 general register

r6 general register

r7 general register

sb program register

sca memory register

scb memory register

shl operator token

shr operator token

sp program register

tos program register

upsr program register

us program register

xor operator token

GENIX Assembler Reference Manual 26

12. Applicable Documents

(1) NS16000 Programmer’s Reference Manual.

(2) Szymanski, T., "Assembling Code for Machines with Span-Dependent Instructions", Communica-

tions of ACM, April 1978, Volume 21, Number 4.

Table of Contents

1 Introduction .. 1

1.1 Assembler Overview .. 1

1.1.1 General Description .. 1

1.1.2 Features .. 1

2 Metasyntactic Conventions .. 2

3 Symbol Construction .. 2

4 Constants .. 2

4.1 Numeric Constants ... 2

4.2 ASCII Character or String Constants ... 3

5 Addressing Modes .. 4

6 Expressions ... 4

6.1 Expression Evaluation .. 4

6.2 Current Location Counter ... 5

6.3 Operators .. 5

6.4 Displacements and Expression Lengths ... 6

7 Assembly Language Statements ... 7

7.1 The Label Field .. 7

7.2 The Command Field ... 7

7.3 The Operand Field .. 7

7.3.1 Constant Operands ... 7

7.3.2 Addressing Mode Operands ... 7

7.4 The Comment Field .. 7

8 Instruction Mnemonics ... 8

8.1 NS16000 Instruction Mnemonics ... 8

8.2 LXPD Instruction ... 12

8.3 Notes and Restrictions .. 12

9 Assembler Directives ... 13

9.1 Addressing Mode Directives .. 13

9.1.1 .DSECT .. 14

9.1.2 .ENDSEG ... 14

9.1.3 .EXPORT .. 14

9.1.4 .EXPORTP ... 14

9.1.5 .IMPORT .. 14

9.1.6 .IMPORTP .. 14

9.1.7 .LOC ... 14

9.1.8 .PROGRAM ... 15

9.1.9 .STATIC .. 15

9.2 Procedure Interface Directives ... 15

9.2.1 .BEGIN ... 15

9.2.2 .ENDPROC .. 16

9.2.3 .MODULE .. 16

9.2.4 .PROC ... 16

9.2.5 .RETURNS ... 16

9.2.6 .VAR ... 16

9.3 Storage Directives .. 16

9.3.1 .ALIGN .. 16

9.3.2 .BLKB, .BLKW, .BLKD, .BLKF, .BLKL .. 17

9.3.3 .BYTE, .SBYTE, .WORD, .SWORD, .DOUBLE, .SDOU-

BLE, .FLOAT , .LONG .. 17

9.3.4 .COMM .. 18

9.3.5 .FIELD .. 18

9.4 Program Listing Directives .. 18

9.4.1 .EJECT ... 18

9.4.2 .LIST and .NOLIST ... 18

9.4.3 .SUBTITLE .. 18

9.4.4 .TITLE .. 18

9.4.5 .WIDTH .. 18

10 Programming Examples ... 19

10.1 Factorial Numbers .. 19

10.2 Square Root Calculation ... 20

10.3 Ackerman’s Function ... 21

10.4 String Sorting ... 22

10.5 Bit Scanning ... 23

10.6 String Packing and Unpacking ... 24

11 Reserved Tokens ... 24

12 Applicable Documents ... 26

