Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
hddxt [2024/02/28 10:49] – [Интерлив] adminhddxt [2024/02/29 14:50] (current) – [Диски MFM] admin
Line 45: Line 45:
 Подробнее в википедии: [[https://en.wikipedia.org/wiki/ST-506]] Подробнее в википедии: [[https://en.wikipedia.org/wiki/ST-506]]
  
-Способ записи (кодировка битов) на такой жесткий диск был MFM (Modified Frequency Modulation) на скорости 10Mbit/s. Таким образом, по названию способа записи и сами жесткие диски стали называться MFM. А интерфейс для подключения у них был уже знакомый нам ST-506/412+Способ записи (кодировка битов) на такой жесткий диск был MFM (Modified Frequency Modulation) на скорости 5 Mbit/s. Таким образом, по названию способа записи и сами жесткие диски стали называться MFM. А интерфейс для подключения у них был уже знакомый нам ST-506/412.
- +
-Надо отметить, что, по сути, диск с интерфейсом ST-506/412 представляет из себя такой "цифровой магнитофон". То есть, выбрав дорожку 0 сторону 1 мы получаем по кругу одни и те же данные 3600 раз в минуту (60 раз в секунду) и плюс сигнал INDEX на каждый оборот. Поэтому, в теории, записать на дорожку ST-506/412 можно **что угодно**, не только MFM, а любой поток битов <10MHz. Формированием и распознаванием "заголовков секторов" и выделением данных занимается контроллер. Поэтому, перед использованием нового жесткого диска, его надо отформатировать на вашем контроллере. Такая схема разбиения на сектора называется "Soft Sectors". Совместимость форматов дорожки между разными контроллерами - довольно посредственная. Например, если контроллеры сделаны на одинаковом чипсете (например WD), то совместимость скорее всего будет. А если на разных (WD и, например, OMTI) - то скорее всего нет.+
  
 +Надо отметить, что, по сути, диск с интерфейсом ST-506/412 представляет из себя такой "цифровой магнитофон". То есть, выбрав дорожку 0 сторону 1 мы получаем по кругу одни и те же данные (биты) 3600 раз в минуту (60 раз в секунду) и плюс сигнал INDEX на каждый оборот. Поэтому, в теории, записать на дорожку ST-506/412 можно **что угодно**, не только MFM, а любой поток битов <10MHz. Формированием и распознаванием "заголовков секторов" и выделением данных занимается контроллер. Поэтому, перед использованием нового жесткого диска, его надо отформатировать на вашем контроллере. Такая схема разбиения на сектора называется "Soft Sectors". Совместимость форматов дорожки между разными контроллерами - довольно посредственная. Например, если контроллеры сделаны на одинаковом чипсете (например WD), то совместимость скорее всего будет. А если на разных (WD и, например, OMTI) - то скорее всего нет.
 +{{ :mfm_track.jpg?direct&500 |Формат дорожки MFM контроллера на чипах WD10101}}
 Материалы для дополнительного чтения: Материалы для дополнительного чтения:
   * [[http://wiki.sensi.org/download/doc/st412_oemmanual_apr82.pdf|ST 506/412 OEM Manual]] Фирменное руководство от Seagate на диски ST-506 и ST-412   * [[http://wiki.sensi.org/download/doc/st412_oemmanual_apr82.pdf|ST 506/412 OEM Manual]] Фирменное руководство от Seagate на диски ST-506 и ST-412
Line 55: Line 55:
   * [[http://www.minuszerodegrees.net/manuals.htm#Seagate|Другие модели Seagate]]   * [[http://www.minuszerodegrees.net/manuals.htm#Seagate|Другие модели Seagate]]
   * Пример для изучения возможностей разгона ST-506/412: контроллер повышенной плотности [[http://wiki.sensi.org/download/doc/Perstor%20PS180-16F%20-%20Advertisement.pdf|Perstor PS180-16F]] не MFM.   * Пример для изучения возможностей разгона ST-506/412: контроллер повышенной плотности [[http://wiki.sensi.org/download/doc/Perstor%20PS180-16F%20-%20Advertisement.pdf|Perstor PS180-16F]] не MFM.
 +  * [[https://www.pdp8online.com/mfm/mfm.shtml|MFM Hard Disk Reader/Emulator]] Эмулятор и считыватель дисков MFM. Знает множество форматов.
  
 ====== Шлейфы MFM ====== ====== Шлейфы MFM ======
Line 88: Line 89:
 Контроллер Xebec 1210 - довольно интеллектуальное устройство: на борту целый процессор Z80, ПЗУ с микрокодом, собственный контроллер DMA i8237 и т.д. Такая схемотехника не является строгим каноном, например, контроллеры WD1002-WX и Seagate ST-11M для XT полностью совместимы, но в качестве процессора используют однокристальную ЭВМ i8051 и т.д. Контроллер Xebec 1210 - довольно интеллектуальное устройство: на борту целый процессор Z80, ПЗУ с микрокодом, собственный контроллер DMA i8237 и т.д. Такая схемотехника не является строгим каноном, например, контроллеры WD1002-WX и Seagate ST-11M для XT полностью совместимы, но в качестве процессора используют однокристальную ЭВМ i8051 и т.д.
  
-Контроллер Xebec 1210 поддерживал два жестких диска Seagate ST-412 и имел на борту ПЗУ (Optional ROM), то есть расширение BIOS. Интерфейс между BIOS и Optional ROM, как известно, является стандартом на IBM PC: во время POST процедуры BIOS материнской платы XT сканирует область дополнительных ROM и, если находит сигнатуру, пытается эти ROM запустить. Получив управление BIOS контроллера, в свою очередь, тестирует жесткий диск (читает 1-й сектор) и переписывает на себя вектора прерываний INT 13 и INT 19 (включается первым в цепочку). Если же диск неисправен - выводится ошибка 1701.+Контроллер Xebec 1210 поддерживал два жестких диска Seagate ST-412 и имел на борту ПЗУ (Optional ROM), то есть расширение BIOS. Интерфейс между BIOS и Optional ROM, как известно, является стандартом на IBM PC: во время POST процедуры BIOS материнской платы XT сканирует область дополнительных ROM и, если находит сигнатуру, пытается эти ROM запустить. Получив управление BIOS контроллера, в свою очередь, тестирует жесткий диск (читает 1-й сектор) и переписывает на себя вектора прерываний INT 13H и INT 19H (включается первым в цепочку). Если же диск неисправен - выводится ошибка 1701.
  
-Новый обработчик INT 13H добавляет поддержку физических дисковых устройства с номером 80H (и 81H для второго диска). Обработка старых устройств (как мы помним - флопиков с номерами 00H и 01H) передается предыдущему обработчику INT 13 (стрый адрес сохраняется на INT 40). Новый обработчик INT 19 меняет логику загрузки: сначала пытается загрузиться с флопика, а в случае неудачи - с первого жесткого диска (устройство 80H).+Новый обработчик INT 13H добавляет поддержку физических дисковых устройства с номером 80H (и 81H для второго диска). Обработка старых устройств (как мы помним - флопиков с номерами 00H и 01H) передается предыдущему обработчику INT 13H (стрый адрес сохраняется на INT 40H). Новый обработчик INT 19H меняет логику загрузки: сначала пытается загрузиться с флопика, а в случае неудачи - с первого жесткого диска (устройство 80H).
  
-BIOS контроллера XT использует некотрые ячейки [[http://stanislavs.org/helppc/bios_data_area.html|BDA]] (BIOS data area), а кроме того, он заполняет область FDPT (Fixed Disk Parameter Table), на которую указывает INT 41 (INT 46 для второго диска). Обратите внимание, этот вектор используется не для вызова, а именно как x86 FAR-указатель на данные параметров жесткого диска. Указывать он может как прямо на таблицу в области ROM контроллера диска, так и в память. Для таблички FDPT часто используется или область старших прерываний (INT C0-C3 и INT C4-C7) которые не использует никто кроме ROM Basic, или область стека BIOS 0000:0500h, что конечно чревато ее затиранием. Иногда используют последний килобайт памяти 9000:FС00 (там же размещается EBDA (Extended BIOS Data Area)) и остается 639К вместо 640К. Для устройств с нормерами от 82H и выше таблицы FDPT не ведется, их параметры можно узнать только через INT 13H функцию 8H.+BIOS контроллера XT использует некотрые ячейки [[http://stanislavs.org/helppc/bios_data_area.html|BDA]] (BIOS data area), а кроме того, он заполняет область FDPT (Fixed Disk Parameter Table), на которую указывает INT 41H (INT 46H для второго диска). Обратите внимание, этот вектор используется не для вызова, а именно как x86 FAR-указатель на данные параметров жесткого диска. Указывать он может как прямо на таблицу в области ROM контроллера диска, так и в память. Для таблички FDPT часто используется или область старших прерываний (INT C0-C3 и INT C4-C7) которые не использует никто кроме ROM Basic, или область стека BIOS 0000:0500h, что конечно чревато ее затиранием. Иногда используют последний килобайт памяти 9000:FС00 (там же размещается EBDA (Extended BIOS Data Area)) и остается 639К вместо 640К. Для устройств с нормерами от 82H и выше таблицы FDPT не ведется, их параметры можно узнать только через INT 13H функцию AH=8H.
  
 При старте MS-DOS опрашивает BIOS и FDPT на наличие жестких дисков в системе. Поддержка MS-DOS для жесткого диска устроена также несколько сложнее, чем для дискеты. Появилась поддержка Таблиц Разделов (Partition Table) и специальная программа FDISK в составе DOS (начиная с 2.0) для работы с разделами. Загрузчик в Boot Sector-е жесткого диска тоже несколько сложнее - он проверяет таблицу разделов и грузится с первого "активного" раздела. Когда загружается MS-DOS, он присваивает устройству 80H (а точнее, первому активному разделу) символическое имя C:, так как на уровне BIOS никаких имен нету, только номера устройств. При старте MS-DOS опрашивает BIOS и FDPT на наличие жестких дисков в системе. Поддержка MS-DOS для жесткого диска устроена также несколько сложнее, чем для дискеты. Появилась поддержка Таблиц Разделов (Partition Table) и специальная программа FDISK в составе DOS (начиная с 2.0) для работы с разделами. Загрузчик в Boot Sector-е жесткого диска тоже несколько сложнее - он проверяет таблицу разделов и грузится с первого "активного" раздела. Когда загружается MS-DOS, он присваивает устройству 80H (а точнее, первому активному разделу) символическое имя C:, так как на уровне BIOS никаких имен нету, только номера устройств.
Line 125: Line 126:
 ===== Геометрия ===== ===== Геометрия =====
 {{ ibm_hdd_1.jpg?nolink&200}} {{ ibm_hdd_1.jpg?nolink&200}}
-Как уже написано выше, диск MFM с физической точки зрения состоит из XXX дорожек (Cylinders) и YY головок (Heads) и "свободного" пространства на дорожке. Возникает два вопроса:+Как уже написано выше, диск MFM с физической точки зрения состоит из NNN дорожек (Cylinders) и YY головок (Heads) и "свободного" пространства на дорожке. Возникает два вопроса:
  
   * Каким образом дорожка форматируется на сектора ?   * Каким образом дорожка форматируется на сектора ?
Line 187: Line 188:
 Для чего придумали интерлив (чередование) ? Дело в том, что машины тогда были довольно медленные. XT вместе с контроллером просто не успевала обрабатывать поступающую информацию, и сектор на вращающемся диске успевал "убежать" из под считывающей головки. Чтобы прочитать следующий сектор N+1, надо было ждать целый оборот диска. Идея пришла очень простая. Поскольку все сектора имеют внутри номер, то сектора можно записывать не подряд. Например, у нас на дорожке 17 секторов, и нам надо прочитать сектора 2 и 3. Записываем сектора в таком порядке: Для чего придумали интерлив (чередование) ? Дело в том, что машины тогда были довольно медленные. XT вместе с контроллером просто не успевала обрабатывать поступающую информацию, и сектор на вращающемся диске успевал "убежать" из под считывающей головки. Чтобы прочитать следующий сектор N+1, надо было ждать целый оборот диска. Идея пришла очень простая. Поскольку все сектора имеют внутри номер, то сектора можно записывать не подряд. Например, у нас на дорожке 17 секторов, и нам надо прочитать сектора 2 и 3. Записываем сектора в таком порядке:
  
- 7 2 8 3 9+ 1 7 13 2 8 14 3 9 15 4 10 15 5 11 17 6 12
  
-Пока мы разбираемся с сектором 2 под головкой "проскакивают" сектора 5 и 8, а сектор 3 оказывается в нужное время в нужном месте. Тут получается интерлив 3:1, то есть один читаем, два пропускаем, читаем. Для чтения всех 9-ти секторов подряд нам нужно три оборота шпинделя. Соответственно, суммарная скорость "с блина" тоже падает, но зато нам не нужно ждать целый оборот для поиска следующего сектора. При интерливе 1:1 получилась бы самая высокая скорость, но далеко не все контроллеры и машины успевали обработать такой поток.+Пока мы разбираемся с сектором 2 под головкой "проскакивают" сектора 8 и 14, а сектор 3 оказывается в нужное время в нужном месте. Тут получается интерлив 3:1, то есть один читаем, два пропускаем, читаем. Для чтения всех 17-ти секторов подряд нам нужно три оборота шпинделя. Соответственно, суммарная скорость "с блина" тоже падает, но зато нам не нужно ждать целый оборот для поиска следующего сектора. При интерливе 1:1 получилась бы самая высокая скорость, но далеко не все контроллеры и машины успевали обработать такой поток.
  
-Программа форматирования большинства XT контроллеров позволяет задавать интерлив вручную. Как правило, оптимальное значение зависит от скорости материнской платы в TURBO моделях и модели контроллера. Обычно скорость плавно возрастает от примерно 80Кб/с на интерливе 6:1, а потом резко падает (сектора успевают "убежать"). На TURBO материках 12MHz и хорошем контроллере иногда достижим интерлив 2:1 и скорость передачи до 400Кб/с.+Программа форматирования большинства XT контроллеров позволяет задавать интерлив вручную. Как правило, оптимальное значение зависит от скорости материнской платы в TURBO XT моделях и модели контроллера. Обычно скорость плавно возрастает от примерно 80Кб/с на интерливе 6:1, а потом резко падает (сектора успевают "убежать"). На TURBO материках 12MHz и хорошем контроллере иногда достижим интерлив 2:1 и скорость передачи до 400Кб/с.
  
 Существуют несколько программ, которые могут подобрать оптимальный интерлив для данной комбинации материнской платы плюс контроллер, например OPTUNE или CALIBRATE. Существуют несколько программ, которые могут подобрать оптимальный интерлив для данной комбинации материнской платы плюс контроллер, например OPTUNE или CALIBRATE.
Navigation